Iran’s Requirements to Develop Its Balanced Regional Model in Coherence with Achieving International GHGs Emission Reduction Goals

Document Type : Original Article

Authors

1 Assistant Proffessor in the department of Environment Engineeing in the University of Tehran

2 Assistant Proffessor in the department of Environment Science in thd University of Zanjan

Abstract

Abstract;
Climate change and its consequences will change human life enormously during coming decades. This has caused the international community to place high priority to conduct evaluation, in order to formulate the necessary control strategies as part of its top actions. Iran is ranked the ninth-largest emitter of GHG emissions in 2015 and, during Paris negotiation, Iran pledged 4% emissions cut by 2030 relative to BAU, and furthermore, if enjoying full technical and financial supports from international community, this could increase to 12%. In the light of this decision, the present research work pays attention to the analyses of Iran’s GHG emissions sectorial trends during recent decades. Evaluations indicate that the pattern is uptrend and power plants, residential-commercial buildings, and transportation are the greatest emitter sectors. Analysis of driving forces influencing the long-term emissions (1971-2012) show that factors such as population, GDPcapita, energy intensity, and carbon intensity are the most effective driving forces with impact coefficients +2.94, +1.004, -0.035, and -0.694, respectively. Evaluation of development-revenue patterns from GHG emissions perspective confirms that a large amount of fuels would have to be consumed in industrial sectors with the least economic efficiency. In addition, small industrial units (with less than 10 employees), despite high energy consumption, cannot compete with large industries in revenue production. A closer examination, from justice and equitable distribution of facilities, driving forces, and responsibilities, among provinces in Iran revealed an unbalanced and far from justice existing structure. International reduction goals are not achievable unless adequate identification of current circumstances with a broad view to find solution to existing problems and such analyses and models, as developed in this research, can be used for better understanding of needs and parameters for the development of a model based on equity and sustainability.;

Keywords


الف) منابع فارسی

1. توکلی آزاده (1393). ارائه مدل توزیع بهینه انتشار گازهای گلخانه‌ای بین مناطق مختلف ایران با استفاده از نظریه بازی‌ها و از منظر توسعه پایدار، رساله دکتری تخصصی، دانشگاه تهران.
2. دبیرخانه شورای عالی انقلاب فرهنگی (1394). ارزیابی اسناد انرژی و محیط‌زیست کشور جهت بازنگری و اصلاح، اداره کل نظارت و ارزیابی علمی و فناوری.
3. سازمان حفاظت محیط‌زیست ایران (1394). برنامه اهداف موردنظر مشارکت ملّی (INDC)، کمیته ملّی تغییرات آب و هوایی جمهوری اسلامی ایران.
4. مجمع تشخیص مصلحت نظام (1394). سیاست‌های کلی محیط‌زیست (مورخ 26/08/94)، http://maslahat.ir/
5. وزارت صنایع و معادن (1389). برنامه بخش صنعت و معدن در طرح تحول اقتصادی، تهران.
6. وزارت نیرو (1394)، ترازنامه انرژی سال 1392، دفتر برنامه‌ریزی‌های کلان برق و انرژی ـ معاونت امور برق و انرژی.

ب) منابع لاتین

1. CDIAC (2009) , Carbon dioxide emissions (CO2) , thousand metric tons of CO2, The official United Nations site for the MDG Indicators (CDIAC).
2. CDIAC (2011) , Record High 2010 Global Carbon Dioxide Emissions from Fossil-Fuel Combustion and Cement Manufacture, The official United Nations site for the MDG Indicators (CDIAC(.
3. CDIAC (2012) , Statistics Division, The official United Nations site for the MDG Indicators (CDIAC).
4. DOE (2012) , United Nations Statistics Division, U. S. Department of Energy.
5. Enerdata (2014) , Global Energy Statistical Yearbook 2013, Global Energy Intelligence.
6. Enerdata (2016), Global Energy Statistical Yearbook 2016, Global Energy Intelligence.
7. Etheridge, D., Steele, L., Langenfelds, R., Francey, R., Barnola, J. M. & Morgan, V. (1996) , Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, Journal of Geophysical Research: Atmospheres, 101 (D2) , 4115-4128.
8. Fan, Y., Liu, L. C., Wu, G. & Wei, Y. M. (2006) , Analyzing impact factors of CO2 emissions using the STIRPAT model, Environmental Impact Assessment Review, 26 (4) , 377-395.
9. Germanwatch (2015) , The largest producers of CO2 emissions worldwide in 2015, based on their share of global CO2 emissions, Germanwatch, Germanwatch.
10. Grabemann, I., Gaslikova, L., Groll, N. & Weisse, R., (2015) , Anthropogenic climate change impact on future North Sea wave and surge conditions, EGU General Assembly Conference Abstracts.
11. Holtz-Eakin, D. & Selden, T. M. (1995) , Stoking the fires? CO2 emissions and economic growth, Journal of public economics, 57 (1) , 85-101.
12. Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. & Kleypas, J. (2003), Climate change, human impacts, and the resilience of coral reefs, Science, 301 (5635) , 929-933.
13. IEA (2012) , CO2 Emissions from Fuel Combustion- 2011 Highlights, International Energy Agency (IEA).
14. IPCC (2001) , The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the IPCC (TAR) , Climate Change 2001, Intergovernmental Panel on Climate Change, IPCC.
15. IPCC (2006) , 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change, IPCC.
16. IPCC (2007) , The Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland.
17. IPCC (2013) , The physical science basis, Contribution of working group I to the fifth assessment report, Intergovernmental Panel on Climate Change, IPCC.
18. IPCC (2014) , Climate Change 2014- Impacts, Adaptation and Vulnerability: Regional Aspects, Intergovernmental Panel on Climate Change, IPCC, Cambridge University Press.
19. Midgley, G. F. & Bond, W. J. (2015) , Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change, Nature Climate Change, 5 (9): 823-829.
20. NOAA (2016) , Earth's CO2 Home Page, National Oceanic and Atmospheric Administration.
21. Parmesan, C. & Yohe, G. (2003) , A globally coherent fingerprint of climate change impacts across natural systems, Nature, 421 (6918) , 37-42.
22. Ringius, L., Torvanger, A. & Holtsmark, B. (1998) , Can multi-criteria rules fairly distribute climate burdens? OECD results from three burden sharing rules, Energy Policy, 26 (10): 777-793.
23. Rogelj, J. (2013) , Long-term climate change: projections, commitments and irreversibility, Cambridge University Press, 1029-1136.
24. Rom, W. N., Evans, L. & Uppal, A. (2013) , The sentinel event of climate change: Hurricane Sandy and its consequences for pulmonary and critical care medicine, American journal of respiratory and critical care medicine, 187 (2) , iii-iv.
25. Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J,. Luo, Y., Marengo, J., McInnes, K. & Rahimi, M. (2012) , Changes in climate extremes and their impacts on the natural physical environment, Managing the risks of extreme events and disasters to advance climate change adaptation, Cambridge University Press, 109-230.
26. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M. & Miller, H. (2007) , The physical science basis, Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 235-337.
27. Stott, P. (2016) , How climate change affects extreme weather events, Science, 352 (6293) , 1517-1518.
28. Tavakoli, A., Shafie-Pour, M., Ashrafi, K. & Abdoli, G. (2016) , Options for sustainable development planning based on “GHGs emissions reduction allocation (GERA) ” from a national perspective, Environment, Development and Sustainability, 19-35.
29. Tavakoli, A., Shafie-Pour, M., Ashrafi, K. & Abdoli, G. (2017) , GHGs emission reduction targeting based on horizontal equity concept at a country level, Environmental Engineering and Management Journal.
30. Trnka, M., Rötter, R. P., Ruiz-Ramos, M., Kersebaum, K. C., Olesen, J. E., Žalud, Z. & Semenov, M. A. (2014) , Adverse weather conditions for European wheat production will become more frequent with climate change, Nature Climate Change, 4 (7) , 637-643.
31. UNFCCC (2015) , INDCs as communicated by Parties, INDC Retrieved 2016/10/09, from http://www4. unfccc. int/Submissions/INDC.
32. United Nations (2015) , The 2015 Revision of World Population Prospects, Department of Economic and Social Affairs, New York, United Nations.
33. United Nations Environment Program, UNEP (2015) , UN Climate Change Newsroom, Retrieved 2016/04/06, from http://newsroom. unfccc. int/.
34. Wang, C., Chen, J. & Zou, J. (2005) , Decomposition of energy-related CO2 emission in China, 1957–2000, Energy, 30 (1) , 73-83.
35. World Bank (2012) , Statistics Division, World Bank.
36. World Bank (2016) , World Databank, the World Bank Group, Washington D.C.
37. Wyman, O. (2012) , World Energy Trilemma 2012, Energy Sustainability Index, World Energy Council.
38. Zhang, M., Mu, H. & Ning, Y. (2009) , Accounting for energy-related CO2 emission in China, 1991–2006, Energy Policy, 37 (3) , 767-773.